Wiener's lemma for localized integral operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener’s Lemma for Localized Integral Operators

In this paper, we introduce two classes of localized integral operators on L2(Rd) with the Wiener class W and the Kurbatov class K of integral operators as their models. We show that those two classes of localized integral operators are pseudo-inverse closed non-unital subalgebra of B2, the Banach algebra of all bounded operators on L2(Rd) with usual operator norm.

متن کامل

Some concavity properties for general integral operators

Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.

متن کامل

Stability of Localized Integral Operators on Weighted L Spaces

In this paper, we consider localized integral operators whose kernels have mild singularity near the diagonal and certain Hölder regularity and decay off the diagonal. Our model example is the Bessel potential operator Jγ , γ > 0. We show that if such a localized integral operator has stability on a weighted function space Lw for some p ∈ [1,∞) and Muckenhoupt Ap-weight w, then it has stability...

متن کامل

Wiener ’ s Lemma for Singular Integral Operators of Bessel Potential Type

In this paper, we introduce an algebra of singular integral operators containing Bessel potentials of positive order, and show that the corresponding unital Banach algebra is an inverseclosed Banach subalgebra of B(Lw), the Banach algebra of all bounded operators on the weighted space Lw, for all 1 ≤ q < ∞ and Muckenhoupt Aq-weights w. Mathematics Subject Classification (2000) 47L80, 42B20, 45P...

متن کامل

some concavity properties for general integral operators

let $c_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{d}$. each function $f in c_{0}(alpha)$ maps the unit disk $mathbb{d}$ onto the complement of an unbounded convex set. in this paper, we study the mapping properties of this class under integral operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2008

ISSN: 1063-5203

DOI: 10.1016/j.acha.2007.10.006